伤蓝 发表于 2019-6-26 14:32:14

伽利略悖论

不是所有的数都是平方数,所有数的集合不会超过平方数的集合。伽利略悖论让人见识了无限集合的惊人特性。在他最后的科学著作《两种新科学》里,伽利略写出了这个关于正整数的矛盾陈述。首先,部分数属于平方数,其它则不是;因此,所有数,包含平方数和非平方数的集合必定大于单独的平方数。然而,对于每个平方数有且只有一个对应的正数平方根,切对于每个数都必定有一个确定的平方数;所以,数和平方数不可能某一方更多。这个悖论虽然不是最早但也是早在无限集合中运用一一对应的例子。伽利略在书中总结说,少、相等和多只能描述有限集合,却不能描述无限集合。19世纪德国数学家格奥尔格·康托尔,也是数集理论的开创者,使用了相同的手法否定了伽利略的这条限制条件的必要性。康托尔认为在无限数集中进行有意义的比较是可行的(康托尔认为数和平方数这两个集合的大小是相等的),在这种定义下,某些无限集合肯定是比另一些无限集合大。伽利略对后继者在无穷数上的突破的预测惊人的准确,伽利略在书中写到,一条线段内所有点的数目和比此更长的线段上点的数目相等,但是伽利略没有想出康托尔的证明法,即线段上所有点的数比整数大。
页: [1]
查看完整版本: 伽利略悖论